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ARTICLE INFO ABSTRACT

Keywords: Increasing tree canopy cover has led to increasing wildfire activity in conifer dominated areas of the south-
LiDAR western United States. Estimating historical changes in the spatial distribution of tree canopy cover can provide
Landsat further insights into the dynamics of forest and fuel conditions in these landscapes and help prioritize areas for
Percent canopy cover restoration to mitigate wildfire risks and restore biological functioning. In this study, we explored the re-
S\Zigg::m lationship between LiDAR derived canopy cover data and Landsat reflectance values, and derived a model to

estimate percent canopy cover (PCC) on historical Landsat data from 1987 to 2015 for the Valles Caldera
National Preserve (VCNP), located in the southwest Jemez Mountains of New Mexico. We developed a regression
model between LiDAR generated canopy cover collected in June 2010 and Landsat Thematic Mapper (TM)
reflectance values (bands 1-7 except band 6) and vegetation indices collected for the same date. About 5%
(17,000) of the total LiIDAR points (329,102) were used as training points and a separate, non-overlapping set of
17,000 points as test points to validate the regression model. A simple linear model with the red band (band 3;
R? = 0.70) was selected as the best model to predict PCC in the rest of the images for 1987-2015. In general, we
found a strong consistency between the spatial dynamics of modelled tree canopy cover based on historical
Landsat data, wildfire events and forest management practices that occurred during the same period. Results
showed that about 11% of the study area experienced an increase in PCC for the period of 1987-2015 while 41%
of the study area experienced a reduction in PCC during the same time period, mostly in the areas which were
affected by stand replacing wildfires in 2011 and 2013. The results indicate an overall increase in medium and
high canopy cover classes in specific regions of the study area, which could lead to hazardous wildfires such as
those in 2011 and 2013. In the context of ongoing ecological restoration of these montane forests, predicted PCC
of contemporary forests could help local managers to identify the areas in the need of immediate restoration
efforts by focusing management practices on the areas with closed canopy.

1. Introduction

The structure of conifer dominated forests in the southwestern United
States was maintained predominantly by fires, insects, and herbivory
(mostly by wild ungulates) before Euro-American settlement (Battaglia &
Shepperd, 2007). After settlement, management practices such as fire sup-
pression, grazing, and logging, combined with changes in climatic patterns,
significantly altered structural and functional patterns in these forests
(Covington & Moore, 1994; Moore, Huffman, Fulé, Covington, & Crouse,
2004). Consequently, southwestern forests are currently thought to have
higher tree densities, greater canopy cover and lower understory diversity
compared to their pre-settlement conditions (Allen et al., 2002; Covington &
Moore, 1994; Covington et al., 1997; Reynolds et al., 2013, pp. 1-76). In

addition, these forests have become more susceptible to wildfires due to
increases in crown closure (Battaglia & Shepperd, 2007). Estimating the
spatial distribution of tree canopy cover provides an insight into current
forest and fuel conditions in these landscapes and further assists in prior-
itizing areas for restoration to mitigate wildfire risks and restore biological
functioning (Mutlu, Popescu, Stripling, & Spencer, 2008; Stephens, Collins,
& Roller, 2012).

The use of remote sensing is considered a reliable method for measuring
or modeling forest parameters at landscape and regional scales. Sensors on
both satellite and aircraft are able to measure energy patterns reflected from
forest ecosystems, and analysts then use multiple techniques to create spa-
tial models of forest parameters or processes based on corresponding en-
ergy-forest interactions (Ahmed, Franklin, Wulder, & White, 2015). Light
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detection and ranging (LiDAR) is a widely used active remote sensing
technique in forest ecology and has been used since the early 1980s in
Central and North America (Aldred and Bonner, 1985; Arp, Griesbach, &
Burns, 1982). Most LiDAR systems use the time required for an emitted laser
to travel to and from an object as a method of data collection; this time is
different for objects with different heights, which helps to determine vertical
forest parameters (Lim, Treitz, Wulder, St-Onge, & Flood, 2003). The LiDAR
data collection process could be highly accurate (i.e. within few cen-
timeters), depending on surface features of the earth, among other factors
(Krabill, Collings, Swift, & Butler, 1980; Pereira & Janssen, 1999). LiDAR
predictions are highly accurate for estimating forest parameters (R? values
as high as 0.94 for stand height, 0.95 for basal area and 0.97 for bole vo-
lume of spruce-fir) and could save considerable time and expense when
surveying forests (Ahmed et al., 2015; Renslow, Greenfield, & Guay, 2000,
p.- 19).

Unlike other remote sensing methods, LiDAR data are not affected by
shadows and tree self-shading, which enhances its accuracy for many for-
estry applications including stand density, canopy cover, basal area and
biomass (Erdody & Moskal, 2010). In addition, LiDAR contrasts with other
remote sensing techniques that mostly provide data on horizontal patterns
in forest structure, because vertical distribution of vegetation can also be
estimated (Lim et al., 2003). Among several LiDAR applications, ecological
examples include terrain modeling with an average accuracy
of 22cm (Mongus & Zalik, 2014; Reutebuch, McGaughey, Andersen, &
Carson, 2003), land cover classification with accuracies as high as 98%
(Antonarakis, Richards, & Brasington, 2008; Sasaki, Imanishi, Ioki,
Morimoto, & Kitada, 2012), and estimating forest parameters with an ac-
curacy up to 97% (Hudak, Evans, & Stuart Smith, 2009; Lim et al., 2003). In
particular, tree heights (Gaulton & Malthus, 2010; Suarez, Ontiveros, Smith,
& Snape, 2005) and canopy cover (Coops et al., 2007; Korhonen, Korpela,
Heiskanen, & Maltamo, 2011; Lovell, Jupp, Culvenor, & Coops, 2003; Smith
et al., 2009) have been modelled using LiDAR data in conjunction with
ground measurements and passive remote sensing data such as Landsat
imagery with accuracies as high as 96%, which has the potential to greatly
increase the utility of LIDAR measurements.

The Landsat program is one of the commonly used series of optical
sensors in orbit for land cover applications. This global satellite monitoring
program has been implemented by NASA since the early 1970s and pro-
vides the longest continuous global record of Earth's surface (Jensen, 2007).
Landsat images have proven crucial for fulfilling forest inventory objectives,
particularly in areas with complex topography where field data collection is
limited due to accessibility (Franklin, Hall, Smith, & Gerylo, 2003;
Vogelmann, Tolk, & Zhu, 2009). Landsat images have also played a vital
role in monitoring dynamic forested landscapes in response to disturbances
such as fire, logging, and urbanization as they are acquired at the regular
intervals, are freely available and may explain up to 97% variability in
forest parameters (Clark & Bobbe, 2006; Franklin et al., 2003). In general,
reflectance in Landsat Thematic Mapper (TM) visible and water bands de-
creases with increasing canopy cover in mixed conifer forests such as those
that are dominant in the southwestern US, and this occurs because the
absorption of energy by leaf pigments and leaf water content increases as
the leaf area and biomass increases (Butera, 1986; Fiorella & Ripple, 1993;
Spanner, Pierce, Peterson, & Running, 1990). The near-infrared (NIR) band,
on the other hand, has been shown to be unresponsive to changes in canopy
cover in conifer forests (Butera, 1986).

Landsat images have been used in conjunction with high resolution
LiDAR data for estimating several forest parameters in conifer dominated
areas. Some examples include the quantification of volume and biomass of
deciduous and pine forests in Virginia with maximum R? value of 0.39 for
deciduous trees and 0.83 for pine trees (Popescu, Wynne, & Scrivani, 2004),
leaf area index estimation in ponderosa pine forests of South Dakota with R?
values of 0.66 and Idaho with maximum R? values of 0.86 (Chen, Vierling,
Rowell, & DeFelice, 2004; Jensen, Humes, Vierling, & Hudak, 2008), LIDAR
based stand height and crown dimensions in planted conifer trees in central
Mississippi and eastern Texas with an accuracy between 0.1 and 0.4m? as
compared to ground based measurements (Roberts et al., 2005), tree height
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and crown diameter in Idaho with an overall accuracy of 95% (Falkowski
et al., 2006), basal area and tree density in Idaho with R? values 0.92 and
0.88 respectively (Hudak et al., 2006), understory vegetation cover esti-
mation in northeastern California with R? values in between 0.70 and 0.80
(Wing et al., 2012), and forest canopy fuels in Washington with R? values as
high as 0.95 when LiDAR and high resolution aerial infrared imagery
combined (Erdody & Moskal, 2010). However, most studies in conifer for-
ests estimated forest parameters for a particular year or season, rather than
change in forest structure over time.

Unlike other studies which focused on comparing field data and LiDAR
derived parameters or using field data for change detection in the forests,
we focused on developing a model using LiDAR data and Landsat data and
using the model in a series of images to detect change in percent canopy
cover over time. In this context, we explored the predictability of Landsat
reflectance to estimate LiDAR generated percent canopy cover and explored
tree canopy cover dynamics in conifer dominated mountainous areas in the
context of recent wildfires and ongoing restoration efforts. To achieve these
goals, we analyzed gradual change in percent canopy cover using LiDAR
data and Landsat imagery from 1987 to 2015. We developed regression
models to predict LiDAR generated percent canopy cover (PCC) from
Landsat reflectance and used the best model to monitor the changes in
canopy cover over this period with the aim of evaluating canopy cover
change within the study area, determine where those changes were located,
and explore the causal factors behind these changes. This provides insight
into canopy status of the forest and may assist resource managers with
identifying areas in need of restoration. In this work, we evaluate the hy-
potheses that Landsat TM reflectance is a good predictor of LiDAR derived
canopy cover, and disturbance factors such as logging activities and wild-
fires have influenced canopy cover dynamics in the Valles Caldera National
Preserve.

2. Materials and methods
2.1. Study area

The study area encompasses the 35,560ha Valles Caldera National
Preserve (VCNP), located in the Jemez Mountains in northern New Mexico
(Fig. 1). The preserve consists of about 10,000 ha of montane grasslands
(Coop & Givnish, 2007), which we excluded from the analysis, as the focus
of the study was forest canopy cover. Data on grassland areas were obtained
from the 1992 National Land Cover Dataset (NLCD) which was based on the
Landsat TM image acquired on January 1st, 1988 (Vogelmann et al., 2001).
We used land cover data based on 1988 imagery to maintain consistency
with the beginning of the analysis and to minimize possible errors due to
land cover changes through this time. In our analysis, we defined grassland
boundaries based on the 1992 land cover data and removed an inner buffer
of 100m from the boundary to allow the inclusion of marginal areas of
transition between forest and montane grasslands (Coop & Givnish, 2007) in
our analysis.

2.2. Airborne LiDAR data and preprocessing

The National Center for Airborne Laser Mapping (NCALM) collected
airborne LiDAR data between June 28 and July 08, 2010 with an
average point density of 10 points per square meter (details in Table 1).
This mission was accomplished using a Gemini 06SEN/CON195 system
installed on a PA-31, tail number N931SA.

With an average of 10 points per square meter, LiDAR point cloud
data consisted of a various number of returns depending on the dif-
ferent vegetation types: the higher the number of layers, the higher the
number of returns. A small portion of the LiDAR data is shown in Fig. 2
where it represents the points by its height as compared to the digital
ortho photo (Fig. 2a and b). A profile view represents the ground points
and low, medium and high vegetation (Fig. 2c).

The Valles Caldera National Preserve management personnel was
provided with post-processed LiDAR data by NCALM including a “tree
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Fig. 1. Study area (Valles Caldera National Preserve).

canopy cover” product at 1m X 1m pixel size (minimum mapping
unit). These data were provided to the authors upon request. The height
cutoff of 1.5 m has previously demonstrated a clear separation between
canopy and background, and this is the most commonly used height
threshold (McLane, McDermid, & Wulder, 2009). Canopy cover was
determined based on the total number of returns above 1.5m and the
total number of points in one-meter pixel (adapted from Nelson, Krabill,
& MacLean, 1984):

Number of points above 1.5 m

Canopy Cover (%) X 100

Total number of points

We used the fishnet tool in ArcGIS 10.5 to create 30m x 30m grid
corresponding to the Landsat pixels. Using the LiDAR derived percent ca-
nopy cover (PCC) at 1 m X 1 m, we used zonal statistics tool in ArcGIS 10.5
to obtain the PCC values at 30m x 30m size so that the grids were
equivalent to Landsat Pixels. With this tool, using an average statistic, a
single LiDAR derived PCC value of 900 pixels was assigned to the corre-
sponding 30 m X 30 m zone. The PCC was then extracted to points so that
the points could be used to obtain the reflectance values from Landsat
imagery from the same location. Scan angle plays an important role in

Table 1

Parameters of LiDAR data acquisition.
Parameters Value Unit
Aircraft velocity 65 meters/second
Flying altitude 600 meters
Field of view (FOV) + 14 degrees
Pulse rate frequency 100 kilo Hertz
Swath overlap 50 %
Mean ground point density 10.28 points/m?
Horizontal accuracy 0.25 meters
Vertical Accuracy 0.38 meters
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modeling percent canopy cover in conifers, and the error increases with
increasing scan angle (Disney et al.,, 2010). Korhonen et al. (2011) de-
monstrated a bias of less than 5% in LiDAR-derived canopy cover in mixed
coniferous forests and suggested that groundtruthing may not be required
for LiDAR data with low field of view (FOV; 15°). Since the LiDAR FOV in
this case was 14° (Guo, 2011), and ground data were not available, we used
PCC derived from the LiDAR data without groundtruthing.

2.3. Landsat data

Landsat TM surface reflectance data were obtained from the United
States Geological Survey Landsat archive (http://earthexplorer.usgs.gov/).
To minimize the errors due to variability in data acquisition sensors, we
focused on Landsat 4/5TM from 1987 to 2011 and Landsat 8 Operational
Land Imager (OLI) thereafter, as the Landsat TM satellite was inactive after
2011. Cloud free Landsat scenes were used to analyze canopy cover change
from 1987 to 2015. Landsat images acquired for path 34 and row 35 for
1987-06-22, 1992-07-05, 1999-06-07, 2006-06-10, 2010-06-30 and 2015-
06-29 were used in the analysis. Images acquired at the same time of the
year (June and early July) were chosen for consistency so that they could be
used to best distinguish spectral signatures of the different forest structures
(Elmore, Mustard, Manning, & Lobell, 2000). We used TM bands 1 to 7 from
2010 scene (and several calculated indices) except band 6 because of its
difference in pixel size during data acquisition (120 m pixels instead of
30 m). In addition, we used Landsat 8 Operational Land Imager (OLI) bands
2 to 7 for 2015. Once the individual bands were stacked into a single file,
the image was clipped to the VCNP boundary.

Previous researchers have used six to eight-year intervals to allow the
observation of significant land cover changes using Landsat imagery
(Drummond et al., 2012; Xian, Homer, & Fry, 2009). For this study, we used
four to seven-year intervals, based on data availability. The imagery ac-
quired in 2010-06-30 (path 33, row 35 as path 34, row 35 image had cloud
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Fig. 2. A sample of LiDAR data in Valles Caldera National Preserve collected in 2010 compared to the National Agricultural Imagery Program (NAIP) digital
orthophoto. (a) NAIP scene — 1 m spatial resolution. (b) LIDAR point cloud classified by height — an average of 10 points/m>. The black box corresponds to the profile

view in (c). (c) a profile view of the LiDAR point cloud classified by height.

cover) was used to develop a regression model between LiDAR derived
canopy cover and individual bands/vegetation indices. This particular
image acquired in 2010 was selected to conform with the time of LiDAR
data acquisition so that the error due to seasonality and time was mini-
mized.

2.4. Canopy cover estimation

We randomly selected approximately 5% (i.e. 17,000) of the total
329,102 points as a training dataset to develop the prediction model
because considering more than 5% of the points did not improve the
model performance. Another non-overlapping set of 17,000 points were
randomly selected as a test dataset for model validation. We performed
simple linear regression on the training data between LiDAR generated
canopy cover and individual explanatory variables (TM band 1
(0.45-0.52 pm), band 2 (0.52-0.60 ym), band 3 (0.63-0.69 pm), band 4
(0.76-0.90 um), band 5 (1.55-1.75 pm), band 7 (2.08-2.35 pm), simple
ratios (SR), difference vegetation index (DVI), several normalized dif-
ference indices; Table 2). These vegetation indices were derived from
Jordan (1969), Tucker (1979), Clevers (1988), Gao (1996), Lu, Mausel,
Brondizio, and Moran (2004), Carreiras, Pereira, and Pereira (2006)
and Sivanpillai, Smith, Srinivasan, Messina, and Wu (2006).

In addition, we conducted forward stepwise selection for multiple linear
regressions with 6 bands (band 1 to 7 except band 6) and 10 vegetation
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indices. Among these 16 variables, none of the combinations of two or more
variables significantly improved model performance over the individual
explanatory variables. We applied accuracy assessment for the test dataset
to evaluate the model predictability. Model validation was done based on

Table 2
Formula for vegetation indices for Landsat TM bands.
Indices Formula*
Simple Ratio based _ Band4 _ Bands _ Bands
indices SR1 = Band 3’ SR2 = Band 3’ SR3 = Band 4
SR4 = Band 5

Band 7

Difference index DVI = Band 4 — Band 3

Non?'lal{zed NDVI = Ban34 - Bang 3 ND57 = Bang 5 - Buni 7
indices Band 4 + Band 3 Band 5 + Band 7
Band 5 — Band 3 Band 3 — Band 2
ND53 = Band 5 + band 3’ ND32 = Band 3 + Band 3’

ARVI = Band 4 —(Band 3 — A(Band 1 — Band 3)) a

Band 4 + (Band 3 — A(Band 1 — Band 3))

*SR: Simple Ratio, DVI: Difference Vegetation Index, NDVI: Normalized
Difference Vegetation Index, ND57/ND53/ND32: Normalized Difference
Indices between bands 5 & 7, 5 & 3 and 3 & 2 respectively, ARVI:
Atmospherically Resistant Vegetation Index.

@ avalue of 2 =1 is recommended for most remote sensing applications by
Kaufman and Tanre (1992).
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Fig. 3. Percent canopy cover (PCC) derived from LiDAR data collected in 2010. (a) all the points (n = 329,102) and (b) training data (n = 17,000).

the coefficient of determination (R?), root mean square error (RMSE), mean
absolute error (MAE) and mean bias error (MBE):

R2 =1- Z?:l (ePCCtest,- - PCCtest,-)z
Z?:l (eP Cctesti - P Cctest )2
RMSE = \/Zin:l (ePCCtesti - PCCtesti)2
n
MAE — JZ{; |ePCCrsy, = PCCiey ]|
n
MBE = E?:l (EP CCtesti — P CCtesti)

n

where n = no. of test points (17,000), ePCC,y = estimated percentage
canopy cover based on regression model, PCCy,y; = LiDAR derived per-
centage canopy cover for test data, PCC,y = Average of the LiDAR de-
rived percentage canopy cover for test data. The best regression model
(PCC = 118.49-931.83 Band 3) was used to estimate the canopy cover for
all the Landsat scenes for the period of 1987-2015 in ERDAS Imagine.

2.5. Canopy cover change

Based on the prediction by the regression model, percent canopy cover
classes were created for each year and the area covered by each class was
calculated: 0-20%: no canopy, 21-40%: low canopy; 41-60%: medium
canopy; 61-80%: high canopy; 81-100%: closed canopy. To minimize the
variation due to Landsat imagery acquired through different years, we used
relatively wide canopy cover classes. Consequent change in each class
through time was represented on a graph and a map. We used the change
detection technique in ArcGIS 10.5 to assess the change in two adjacent
years of PCC raster datasets on a pixel by pixel basis for the period of
1987-2015. The difference tool in ArcGIS 10.5 Image Analysis window uses
a basic change detection algorithm i.e. subtract function and computes the
difference between two raster layers at pixel level. Change maps were
prepared for all intervals under consideration and classified as positive
change if PCC increased to a higher cover class, neutral if the PCC class
remained the same, and negative if the PCC class decreased to a lower class.
The burned area extents for 2011 and 2013 were used to compare the
spatial distribution of PCC changes and fire affected areas. To evaluate the
latest conditions of the forests, we used estimated PCC data for 2015 and
analyzed corresponding areas which were: burned in 2011 and 2013,
treated (thinning or prescribed fire) before 2015, planned for restoration
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treatments, or neither treated nor planned for immediate treatments.

3. Results
3.1. Data points

Analogous distribution of the points by PCC classes was observed in the
training dataset and complete dataset based on the percent canopy cover
(PCCQ) classes (Fig. 3a and b). Out of the 17,000 points in the training da-
taset, a majority of the points (40%) represented the high (61-80%) PCC
class. A small proportion (15%) of the points were in the closed canopy
(81-100%) class and rest of the points (45%) represented the lower ca-
nopies (< 60%).

3.2. Bands and vegetation indices

The correlation of individual TM bands and PCC was negative, but most
of the vegetation indices showed positive correlation with PCC (Table 3).

Table 3
Relationships between individual bands/vegetation indices computed from the
training dataset (n = 17,000) and percent canopy cover.

TM Bands/Vegetation indices® Correlation coefficient (r) with PCC"

Band 1 (0.45-0.52 pm) —0.81
Band 2 (0.52-0.60 pm) —0.84
Band 3 (0.63-0.69 pm) —0.84
Band 4 (0.76-0.90 pm) —0.49
Band 5 (1.55-1.75 pum) —0.85
Band 7 (2.08-2.35 pm) —0.83
SR1 0.64
SR 2 0.11
SR 3 -0.77
SR 4 0.46
DVI 0.04
NDVI 0.72
ND57 0.47
ND53 0.12
ND32 —-0.63
ARVI 0.73

@ TM: Thematic Mapper, SR: Simple Ratio, DVI: Difference Vegetation Index,
NDVI: Normalized Difference Vegetation Index, ND57/ND53/ND32: Normalized
Difference Indices between bands 5 & 7, 5 & 3 and 3 & 2 respectively, ARVL:
Atmospherically Resistant Vegetation Index.

> PCC: Percent Canopy Cover; Top 8 values (correlation coefficient higher
than 0.70) are presented in bold face.
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Table 4

Performance of the eight tested models, showing coefficients estimates, coefficient of determination (R?) and adjusted R? (n = 17,000).
Model R? Adj R? F-statistic RSE p-value
PCC" = 125.69 - 366.88 Band 5 0.73 0.73 463.70 12.76 < 0.001
PCC" = 118.49 - 931.83 Band 3 0.70 0.70 405.90 13.38 < 0.001
PCC" = 137.30 - 1265.52 Band 2 0.70 0.70 405.40 13.39 < 0.001
PCC" = 112.25 - 455.37 Band 7 0.69 0.69 386.30 13.62 < 0.001
PCC" = 131.05 - 1664.78 Band 1 0.66 0.66 335.80 14.28 < 0.001
PCC" = 135.70 - 103.70 SR 3 0.60 0.60 256.90 15.54 < 0.001
PCC" = —18.21 + 154.87 ARVI 0.54 0.54 199.00 16.72 < 0.001
PCC" = —56.52 + 195.05 NDVI 0.52 0.52 181.60 17.13 < 0.001

PCC" refers to estimated percent canopy cover.

SR, Simple Ratio; ARVI, Atmospherically Resistant Vegetation Index; NDVI, Normalized Difference vegetation Index.

RSE, Relative Standard Error.
The model in the bold face was used to predict the canopy cover.

Among all the variables, band 5 (SWIR) showed the strongest linear re-
lationship with PCC (r = —0.85), followed by band 3 (red; r = —0.84) and
band 2 (green; r = —0.84). NDVI and ARVI were positively correlated with
PCC (r = 0.72 and r = 0.73 respectively). Consequently, among all the in-
dividual simple linear regression models, the model with band 5 performed
the best (R? = 0.73), followed by the model with band 3 (R? = 0.70) and
band 2 (R? = 0.70; Table 4; Fig. 4). However, we selected the model with
band 3 as the prediction model instead of band 5 to minimize the effects of
moisture content in the forested areas, since band 5 is very sensitive to
water (Frazier & Page, 2000; Xu, 2006). In case of Landsat 8, we used band
4 (red) which corresponds to the TM band 3.

Bias associated with the regression model (band 3 as the ex-
planatory variable) was 0.198, mean absolute error was 3.19 and root
mean square was 13.29. Predicted vs. LiDAR-derived percent cover for
the test data showed a strong correlation (r = 0.84; Fig. 5). The scat-
terplots revealed that most of the errors were associated with lower
canopy cover points.

3.3. Canopy cover change

Large changes occurred in the closed canopy (81-100%) and
medium canopy classes (41-60%; Table 5; Fig. 6). There was a loss of
closed canopy from 1992 to 1999 (—42.28%) and the loss continued
until 2010 (—29.57%). However, closed canopy cover recovered in
2015 (142.09%) as compared to 2010. The lowest canopy cover
(0-20%) fluctuated over time and increased exponentially after
2010. For the period of 1987-2015, estimated canopy cover showed
a loss of high canopy (—58.42%), and gain in other canopy classes,
particularly medium canopy (64.79%) and no canopy cover class
(105.49%).

The PCC change map displays an increase in PCC for most of the
intervals considered for the analysis (Fig. 7). About 38% of the no
canopy cover class experienced an increase to low canopy and about
20% of closed canopy reduced to high canopy in between 1987 and
1992 (Table 6). For the period of 1992-1999, the area experienced
overall decrease in the PCC. In particular, between these years,
about 43% of closed canopy reduced to high canopy, 30% of high
canopy reduced to medium canopy, 28% of medium canopy reduced
to low canopy and 62% of low canopy decreased to no canopy. The
reduction in PCC continued for the period of 1999-2006 where 55%
closed canopy experienced a reduction to high canopy, 20% of
medium canopy to low canopy, and 39% of low canopy changed to
no canopy (Table 6). Even though about 47% of closed canopy re-
duced to high canopy in between 2006 and 2010, the study area

experienced an increase in PCC in the lower PCC classes where 26%
of the no canopy increased to low canopy and 23% low canopy
changed to medium canopy. In between 2010 and 2015 even after
the large fires of 2011 and 2013, 35.87% and 49.59% of no canopy
changed to low canopy and medium canopy respectively, 55.66% of
low canopy increased to medium canopy, 56.07% medium canopy
changed to high canopy and 26.53% of high canopy changed to
closed canopy, however 38.06% of closed canopy reduced to high
canopy after 2010.

Most years experienced positive change to next higher class for
four to seven year intervals starting in 1987. Considering the entire
analysis period (1987-2015), 46.31% of the no canopy changed to
low canopy, 49.18% of low canopy increased to medium canopy, and
29.38% of medium canopy changed to high canopy. On the other
hand, 26.67% of high canopy reduced to medium canopy and
47.60% of closed canopy decreased to high canopy (Table 6). Most of
the increase in canopy occurred along the forest margins and in the
lower elevations (Fig. 8). Overall, 11.15% of the study area showed
an increase in PCC and 41.47%% of the area showed reduced PCC for
the period of 1987-2015. As expected, most of the PCC decrease
occurred in the burned areas or treated areas (Fig. 8).

3.4. Current conditions

As of 2015, a majority of the area burned in the wildfires of 2011
and 2013 consisted of high canopy (45.12% and 54.05%, respec-
tively) and medium canopy (25.15% and 23.97%) (Table 7). We
found a similar pattern for medium to high canopy in the treated
areas (thinning and prescribed burn) as well, though the proportion
of high (37.28%) and medium canopy (36.80%) were more similar
to each other. Whether the areas were burned or treated, more than
70% of the area consisted of 41%-80% canopy cover. However,
more than 79% of the areas which were neither treated nor burned
in the most recent wildfires consisted of 61%-100% canopy cover.
In particular, a significant proportion of the areas planned for
treatment (39.69%) and not treated (30.90%) consisted closed ca-
nopy cover.

4. Discussion and conclusion

We observed a strong correlation between PCC and reflectance
in Landsat TM visible and SWIR bands in the Valles Caldera
National Preserve. Similar results were reported by other re-
searchers while analyzing forest structure in conifer dominated
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Fig. 4. Scatterplots of percent tree canopy cover (n = 17000) and top 8 highly correlated variables (a) band1; (b) band2; (c) band3; (d) band5; (e) band7; (f) Simple
Ratio (SR3); (g) Normalized Difference Vegetation Index (NDVI); (h) Atmospherically Resistant vegetation Index (ARVI).

areas. Canopy cover from spectral mixture analysis showed a strong
negative correlation with all the Landsat TM bands (correlation
coefficients were —0.68, —0.73, —0.78, —0.74 and —0.74 for
bands 1, 2, 3, 5, and 7 respectively) but NIR (r = —0.04) in conifer-

dominated forests of Finland (Hadi, Korhonen, Hovi, Rénnholm, &
Rautiainen, 2016).

Heiskanen, Rautiainen, Korhonen, Mottus, and Stenberg (2011)
reported a strong negative correlation of leaf area index and
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Fig. 5. (a) Scatterplot between LiDAR-derived percent canopy cover (PCC) and predicated PCC for test data (b) Residual plot for test data.

Table 5

Change in percent canopy cover (PCC) classes (1987-2015).
PCC Class 1987 Area (ha) Change in Area (%)® 2015 Area (ha) 1987-2015"

1987-1992 1992-1999 1999-2006 2006-2010 2010-2015

No Canopy (0-20%) 286.83 -17.41 293.58 187.39 —-19.72 —72.60 589.41 105.49
Low Canopy (21-40%) 1,656.45 4.44 63.14 6.08 13.43 —28.10 2,441.52 47.39
Medium Canopy (41-60%) 4,883.49 7.70 38.70 —4.72 15.14 0.56 8,047.44 64.79
High Canopy (61-80%) 10,837.08 12.22 4.14 11.18 —0.45 -3.19 13,569.30 25.21
Closed Canopy (81-100%) 11,955.42 —-14.42 —42.28 —50.62 —29.57 142.09 4,971.60 —58.42

@ The values in the bold face represent the top two changes as compared to the previous year.
> The values in bold face represent the top three changes during the entire analysis period.

reflectance in red and SWIR bands and a weak negative correlation Thematic Mapper Simulator data while analyzing the conifer forests

in NIR band. In addition, Butera (1986) reported a low negative of Colorado. These studies suggest that NIR does not respond to

correlation (—0.14) between canopy closure and NIR band based on changes in canopy cover and that the causal factor for such weak
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Fig. 6. Percent canopy cover (PCC) classes and the area covered (1987-2015).
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Fig. 7. Percent canopy cover change (1987-2015).
response is the influence of understory vegetation response in conifer forests. Given that conifer forests allow for higher pene-
conifer forests. Juvenile trees, bare soil, grasses and shrubs in the tration of sunlight to the understory (in comparison to broadleaf
understory all increase background NIR reflectance in sparse forests), backscattered NIR reflectance readings are a combination
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Table 6
Percent change in the percent canopy cover (PCC) classes.
Years 0Old PCC class Area (%)
New PCC class
0-20% 21-40% 41-60% 61-80% 81-100%

1987-1992 0-20% 55.95 37.97 5.90 0.19 0.00
21-40% 4.49 66.94 27.72 0.85 0.00
41-60% 0.02 10.10 72.15 17.68 0.05
61-80% 0.00 0.15 11.31 81.60 6.94
81-100% 0.01 0.02 0.29 20.41 79.27

1992-1999 0-20% 89.67 10.11 0.23 0.00 0.00
21-40% 61.66 18.11 20.20 0.03 0.00
41-60% 3.70 28.89 62.75 4.66 0.00
61-80% 0.12 1.93 29.92 66.03 2.00
81-100% 0.00 0.07 1.68 42.91 55.34

1999-2006 0-20% 89.90 9.72 0.37 0.01 0.00
21-40% 39.18 47.36 13.15 0.30 0.00
41-60% 9.22 19.74 60.39 10.63 0.02
61-80% 0.48 0.99 16.99 79.32 2.22
81-100% 0.03 0.02 0.30 55.05 44.60

2006-2010 0-20% 70.85 25.71 3.15 0.27 0.02
21-40% 8.22 67.87 22.88 1.00 0.04
41-60% 0.08 9.62 75.90 14.35 0.05
61-80% 0.01 0.04 13.91 82.44 3.60
81-100% 0.00 0.00 0.00 47.15 52.84

2010-2015 0-20% 7.75 35.87 49.59 6.54 0.26
21-40% 2.55 12.11 55.66 29.13 0.55
41-60% 2.37 7.41 31.35 56.07 2.80
61-80% 1.03 4.48 16.80 51.16 26.53
81-100% 0.11 1.81 11.07 38.06 48.94

1987-2015 0-20% 34.39 46.31 17.70 1.60 0.00
21-40% 6.03 40.33 49.18 4.47 0.00
41-60% 2.28 12.08 55.73 29.38 0.53
61-80% 1.75 5.98 26.47 58.73 7.07
81-100% 0.75 3.37 13.32 47.60 34.96

@ The italicized values represent the percentage of PCC class which remained
in the same class. The values in the bold face represent the highest percentage
change of a PCC class to a new class.

of canopy and understory characteristics as well. At moderate pixel
resolution such as the one provided by Landsat (30 m), the homo-
genization of NIR reflectance values are greater and therefore, less
sensitive to real changes in tree canopy cover occurring in the
ground.

We observed a change in PCC for about 52% of the area between
1987 and 2015. In particular, estimated PCC revealed that there
was positive change for the first decade which did not significantly
increase in the next decade until 2006, but rather displayed a drop
in some areas of VCNP. Reduction in PCC (mostly closed canopy) in
the 2000s in the VCNP could possibly be explained by continued
logging even after the establishment of the preserve (Muldavin &
Tonne, 2003, p. 118) and the reduction after 2011 was largely
caused by the large fires of 2011 and 2013 (Fig. 8).

We found that PCC generally increased in the mixed conifer
forests of the Jemez Mountains of New Mexico, which agrees with
several studies in the region (Covington & Moore, 1994; Dieterich,
1983; Fiedler & Keegan, 2003; Fulé, Korb, & Wu, 2009; Kauffman &
Martin, 1989; Lydersen & North, 2012; Lydersen, Collins, Knapp,
Roller, & Stephens, 2015; Scholl & Taylor, 2010; Stephens et al.,
2013; Stevens et al., 2014, 2016). As increasing canopy has in-
creased the risk of stand-replacing wildfires in these conifer forests,
this study suggests that fire could play an important role in reducing
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canopy fuel (Baisan & Swetnam, 1995, pp. 153-156; Cram, Baker, &
Boren, 2006; Hayes & Robeson, 2011; Ouzts, Kolb, Huffman, &
Meador, 2015; Rogan & Yool, 2001). However, this study does not
advocate the need of stand replacing fires to reduce canopy fuel, but
we suggest that prescribed fires could help to maintain healthier
ecosystems with less canopy and more understory (Arkle & Pilliod,
2010; Huisinga, Laughlin, Fulé, Springer, & McGlone, 2005; Hunter,
Iniguez, & Lentile, 2011; Ryan, Knapp, & Varner, 2013). As of 2015,
untreated areas and areas planned for treatment showed higher
proportion of 61-100% canopy cover as opposed to the treated and
burned areas which showed lower proportion of closed canopy and
higher proportion of 41-80% canopy cover. As we estimated more
than 87% of the untreated areas have high to closed canopy, this
study could help managers to identify potential areas for future
restoration plans.

Even though this study was restricted within the VCNP boundary,
similar drivers that are causing changes in the forested landscape are
prevalent in the southwestern montane forests. Unprecedented occur-
rence of large fire events is one of the major issues in these landscapes
due to the departure of the forests from the historical conditions.
Ecological restoration plans have been implemented to avoid such
tragedy of the forest resources.

This study used cloud-free Landsat imagery acquired around the
same months of the years under consideration, yet the response in
the electromagnetic spectrum could be different each year. On the
other hand, while we acknowledged forest invasion in grasslands
(Coop & Givnish, 2007) and included an inner buffer of 100 m to
avoid the errors, this portion of grassland might have resulted in
overestimation or underestimation when performing change detec-
tion. In addition, inaccuracies could also be associated with the
conversion of 1 X 1 m pixel PCC to 30 m X 30 m pixels an average in
zonal statistics method in ArcGIS 10.5. Even though the accuracy is
high with the LiDAR data when estimating percent canopy cover, the
ground data can help to improve the results if it is synchronous with
the LiDAR data.

This study also demonstrated high accuracy LiDAR data as an
effective means of estimating forest parameters (percent canopy
cover in this case) in conjunction with Landsat imagery. This
method has been utilized by several researchers in the past (Ahmed
et al., 2015; Hill & Thomson, 2005; Kane et al., 2010; Pascual,
Garcia-Abril, Cohen, & Martin-Fernandez, 2010; Wulder et al.,
2009), but we extended the methodology to estimate historical PCC,
which has not been accomplished before in these landscapes. In
some cases, LiDAR derived forest parameters have proven to be
more accurate than conventional field-based inventory techniques
(Maltamo, Eerikainen, Pitkanen, Hyyppa, & Vehmas, 2004). In ad-
dition, LiDAR derived canopy cover demonstrated the same trend as
succession and vegetation height dynamics (Falkowski, Evans,
Martinuzzi, Gessler, & Hudak, 2009). However, the utility of LiDAR
techniques is limited because, even when they can be more accu-
rate, they are also more expensive, may display irregularities in
terms of spatial and temporal aspects (Ahmed et al., 2015), and
repeated sampling with LiDAR data is not available for most areas,
especially for historic data. In addition, LiDAR data acquisition
have been more common in the recent years than in the past and
some of the data collected by the government agencies are freely
available (e.g. http://opentopography.org/). Therefore, using both
LiDAR and Landsat data together, as we demonstrated here, could
be a powerful tool to explain forest dynamics over time.
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Table 7
Percent canopy cover classes as of 2015.
PCC Class| Area (%)*
Area (ha) — Fire 2011 (10,030.41) Fire 2013 (9,324.81) Treated (781.38) Planned (310.86) Not Treated (9,364.41)
No Canopy (0-20%) 7.97 1.04 4.75 4.17 0.62
Low Canopy (21-40%) 11.62 5.40 16.06 6.60 4.09
Medium Canopy (41-60%) 25.15 23.97 36.80 9.76 16.99
High Canopy (61-80%) 45.12 54.05 37.28 39.78 47.41
Closed Canopy (81-100%) 10.14 15.54 5.11 39.69 30.90

& Top two values are in bold faces.
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